skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhang, Sanguo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Cancer heterogeneity analysis is essential for precision medicine. Most of the existing heterogeneity analyses only consider a single type of data and ignore the possible sparsity of important features. In cancer clinical practice, it has been suggested that two types of data, pathological imaging and omics data, are commonly collected and can produce hierarchical heterogeneous structures, in which the refined sub‐subgroup structure determined by omics features can be nested in the rough subgroup structure determined by the imaging features. Moreover, sparsity pursuit has extraordinary significance and is more challenging for heterogeneity analysis, because the important features may not be the same in different subgroups, which is ignored by the existing heterogeneity analyses. Fortunately, rich information from previous literature (for example, those deposited in PubMed) can be used to assist feature selection in the present study. Advancing from the existing analyses, in this study, we propose a novel sparse hierarchical heterogeneity analysis framework, which can integrate two types of features and incorporate prior knowledge to improve feature selection. The proposed approach has satisfactory statistical properties and competitive numerical performance. A TCGA real data analysis demonstrates the practical value of our approach in analyzing data heterogeneity and sparsity. 
    more » « less
  2. In biomedical research the analysis of disease prevalence is of critical importance. While most of the existing prevalence studies focus on individual diseases, there has been increasing effort that jointly examines the prevalence values and their trends of multiple diseases. Such joint analysis can provide valuable insights not shared by individual-disease analysis. A critical limitation of the existing analysis is that there is a lack of attention to existing information, which has been accumulated through a large number of studies and can be valuable especially when there are a large number of diseases but the number of prevalence values for a specific disease is limited. In this study we conduct the functional clustering analysis of prevalence trends for a large number of diseases. A novel approach based on the penalized fusion technique is developed to incorporate information mined from published articles. It is innovatively designed to take into account that such information may not be fully relevant or correct. Another significant development is that statistical properties are rigorously established. Simulation is conducted and demonstrates its competitive performance. In the analysis of data from Taiwan NHIRD (National Health Insurance Research Database), new and interesting findings that differ from the existing ones are made. 
    more » « less
  3. Wren, Jonathan (Ed.)
    Abstract Summary Heterogeneity is a hallmark of many complex human diseases, and unsupervised heterogeneity analysis has been extensively conducted using high-throughput molecular measurements and histopathological imaging features. ‘Classic’ heterogeneity analysis has been based on simple statistics such as mean, variance and correlation. Network-based analysis takes interconnections as well as individual variable properties into consideration and can be more informative. Several Gaussian graphical model (GGM)-based heterogeneity analysis techniques have been developed, but friendly and portable software is still lacking. To facilitate more extensive usage, we develop the R package HeteroGGM, which conducts GGM-based heterogeneity analysis using the advanced penaliztaion techniques, can provide informative summary and graphical presentation, and is efficient and friendly. Availabilityand implementation The package is available at https://CRAN.R-project.org/package=HeteroGGM. Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less
  4. Heterogeneity is a hallmark of many complex diseases. There are multiple ways of defining heterogeneity, among which the heterogeneity in genetic regulations, for example, gene expressions (GEs) by copy number variations (CNVs), and methylation, has been suggested but little investigated. Heterogeneity in genetic regulations can be linked with disease severity, progression, and other traits and is biologically important. However, the analysis can be very challenging with the high dimensionality of both sides of regulation as well as sparse and weak signals. In this article, we consider the scenario where subjects form unknown subgroups, and each subgroup has unique genetic regulation relationships. Further, such heterogeneity is “guided” by a known biomarker. We develop a multivariate sparse fusion (MSF) approach, which innovatively applies the penalized fusion technique to simultaneously determine the number and structure of subgroups and regulation relationships within each subgroup. An effective computational algorithm is developed, and extensive simulations are conducted. The analysis of heterogeneity in the GE‐CNV regulations in melanoma and GE‐methylation regulations in stomach cancer using the TCGA data leads to interesting findings. 
    more » « less
  5. Abstract Heterogeneity is a hallmark of cancer, diabetes, cardiovascular diseases, and many other complex diseases. This study has been partly motivated by the unsupervised heterogeneity analysis for complex diseases based on molecular and imaging data, for which, network‐based analysis, by accommodating the interconnections among variables, can be more informative than that limited to mean, variance, and other simple distributional properties. In the literature, there has been very limited research on network‐based heterogeneity analysis, and a common limitation shared by the existing techniques is that the number of subgroups needs to be specified a priori or in an ad hoc manner. In this article, we develop a penalized fusion approach for heterogeneity analysis based on the Gaussian graphical model. It applies penalization to the mean and precision matrix parameters to generate regularized and interpretable estimates. More importantly, a fusion penalty is imposed to “automatedly” determine the number of subgroups and generate more concise, reliable, and interpretable estimation. Consistency properties are rigorously established, and an effective computational algorithm is developed. The heterogeneity analysis of non‐small‐cell lung cancer based on single‐cell gene expression data of the Wnt pathway and that of lung adenocarcinoma based on histopathological imaging data not only demonstrate the practical applicability of the proposed approach but also lead to interesting new findings. 
    more » « less
  6. Abstract In cancer research, supervised heterogeneity analysis has important implications. Such analysis has been traditionally based on clinical/demographic/molecular variables. Recently, histopathological imaging features, which are generated as a byproduct of biopsy, have been shown as effective for modeling cancer outcomes, and a handful of supervised heterogeneity analysis has been conducted based on such features. There are two types of histopathological imaging features, which are extracted based on specific biological knowledge and using automated imaging processing software, respectively. Usingbothtypes of histopathological imaging features, our goal is to conduct the first supervised cancer heterogeneity analysisthat satisfies a hierarchical structure. That is, the first type of imaging features defines a rough structure, and the second type defines a nested and more refined structure. A penalization approach is developed, which has been motivated by but differs significantly from penalized fusion and sparse group penalization. It has satisfactory statistical and numerical properties. In the analysis of lung adenocarcinoma data, it identifies a heterogeneity structure significantly different from the alternatives and has satisfactory prediction and stability performance. 
    more » « less